近年来,大规模的深层模型取得了巨大的成功,但巨大的计算复杂性和大规模的存储要求使其在资源限制设备中部署它们是一个巨大的挑战。作为模型压缩和加速度方法,知识蒸馏通过从教师探测器转移黑暗知识有效提高了小型模型的性能。然而,大多数基于蒸馏的检测方法主要模仿近边界盒附近的特征,这遭受了两个限制。首先,它们忽略边界盒外面的有益特征。其次,这些方法模仿一些特征,这些特征被教师探测器被错误地被视为背景。为了解决上述问题,我们提出了一种新颖的特征性 - 丰富的评分(FRS)方法,可以选择改善蒸馏过程中的广义可检测性的重要特征。所提出的方法有效地检索边界盒外面的重要特征,并消除边界盒内的有害特征。广泛的实验表明,我们的方法在基于锚和无锚探测器上实现了出色的性能。例如,具有Reset-50的RetinAnet在Coco2017数据集上达到39.7%,甚至超过基于Reset-101的教师检测器38.9%甚至超过0.8%。
translated by 谷歌翻译
Recent works on diffusion models have demonstrated a strong capability for conditioning image generation, e.g., text-guided image synthesis. Such success inspires many efforts trying to use large-scale pre-trained diffusion models for tackling a challenging problem--real image editing. Works conducted in this area learn a unique textual token corresponding to several images containing the same object. However, under many circumstances, only one image is available, such as the painting of the Girl with a Pearl Earring. Using existing works on fine-tuning the pre-trained diffusion models with a single image causes severe overfitting issues. The information leakage from the pre-trained diffusion models makes editing can not keep the same content as the given image while creating new features depicted by the language guidance. This work aims to address the problem of single-image editing. We propose a novel model-based guidance built upon the classifier-free guidance so that the knowledge from the model trained on a single image can be distilled into the pre-trained diffusion model, enabling content creation even with one given image. Additionally, we propose a patch-based fine-tuning that can effectively help the model generate images of arbitrary resolution. We provide extensive experiments to validate the design choices of our approach and show promising editing capabilities, including changing style, content addition, and object manipulation. The code is available for research purposes at https://github.com/zhang-zx/SINE.git .
translated by 谷歌翻译
深层神经网络(DNN)容易受到精心设计的扰动的影响,无论是依赖还是独立于图像。后一个称为通用对抗扰动(UAP),对于模型鲁棒性分析非常有吸引力,因为其对输入的独立性揭示了模型的内在特征。相对而言,另一个有趣的观察结果是神经塌陷(NC),这意味着特征变异性可能在训练的末端阶段崩溃。由此激励,我们建议通过攻击NC现象发生的层来生成UAP。由于NC,拟议的攻击可以收集其周围的所有自然图像特征,因此称为功能收集UAP(FG-UAP)。我们评估了我们提出的算法对丰富实验的有效性,包括未靶向和有针对性的通用攻击,有限的数据集中的攻击以及基于转移的黑盒攻击,包括视觉变形金刚,据信更强大的视觉变压器。此外,我们通过分析标签和提取的对抗性示例的标签和提取特征来研究FG-UAP,发现在模型损坏后,崩溃现象变得更强大。接受纸张时,该代码将发布。
translated by 谷歌翻译
构建强大的通用对象检测框架需要扩展到更大的标签空间和更大的培训数据集。但是,大规模获取数千个类别的注释是高昂的成本。我们提出了一种新颖的方法,该方法利用了最近的视觉和语言模型中可用的丰富语义来将对象定位和分类在未标记的图像中,从而有效地生成了伪标签以进行对象检测。从通用和类别的区域建议机制开始,我们使用视觉和语言模型将图像的每个区域分类为下游任务所需的任何对象类别。我们在两个特定的任务(开放式摄影检测检测)中演示了生成的伪标签的值,其中模型需要概括为看不见的对象类别以及半监督对象检测,其中可以使用其他未标记的图像来改善模型。我们的经验评估显示了伪标签在这两个任务中的有效性,我们在其中优于竞争基准并实现了开放式摄制对象检测的新颖最新。我们的代码可在https://github.com/xiaofeng94/vl-plm上找到。
translated by 谷歌翻译
需要产生具有所需特性的有效分子的分子产生是基本但具有挑战性的任务。近年来,目睹了原子级自动回归模型的快速发展,这通常构造在添加原子级节点和边缘的顺序动作之后的图表。然而,这些原子级模型忽略了高频子结构,其不仅捕获分子中原子组合的规律而且通常与所需的化学性质相关,因此可以是用于产生高质量分子的次优。在本文中,我们提出了一种方法来自动发现这种常见的子结构,从给定的分子图中呼叫图形件。我们还提出了一种基于图形件产生分子图的图片变形AutoEncoder(GP-VAE)。实验表明,我们的GP-VAE模型不仅可以实现更好的性能,而不是用于分发 - 学习,属性优化和约束性能优化任务,但也是计算效率的最先进的基线。
translated by 谷歌翻译
Learning the underlying distribution of molecular graphs and generating high-fidelity samples is a fundamental research problem in drug discovery and material science. However, accurately modeling distribution and rapidly generating novel molecular graphs remain crucial and challenging goals. To accomplish these goals, we propose a novel Conditional Diffusion model based on discrete Graph Structures (CDGS) for molecular graph generation. Specifically, we construct a forward graph diffusion process on both graph structures and inherent features through stochastic differential equations (SDE) and derive discrete graph structures as the condition for reverse generative processes. We present a specialized hybrid graph noise prediction model that extracts the global context and the local node-edge dependency from intermediate graph states. We further utilize ordinary differential equation (ODE) solvers for efficient graph sampling, based on the semi-linear structure of the probability flow ODE. Experiments on diverse datasets validate the effectiveness of our framework. Particularly, the proposed method still generates high-quality molecular graphs in a limited number of steps.
translated by 谷歌翻译
High-utility sequential pattern mining (HUSPM) has emerged as an important topic due to its wide application and considerable popularity. However, due to the combinatorial explosion of the search space when the HUSPM problem encounters a low utility threshold or large-scale data, it may be time-consuming and memory-costly to address the HUSPM problem. Several algorithms have been proposed for addressing this problem, but they still cost a lot in terms of running time and memory usage. In this paper, to further solve this problem efficiently, we design a compact structure called sequence projection (seqPro) and propose an efficient algorithm, namely discovering high-utility sequential patterns with the seqPro structure (HUSP-SP). HUSP-SP utilizes the compact seq-array to store the necessary information in a sequence database. The seqPro structure is designed to efficiently calculate candidate patterns' utilities and upper bound values. Furthermore, a new upper bound on utility, namely tighter reduced sequence utility (TRSU) and two pruning strategies in search space, are utilized to improve the mining performance of HUSP-SP. Experimental results on both synthetic and real-life datasets show that HUSP-SP can significantly outperform the state-of-the-art algorithms in terms of running time, memory usage, search space pruning efficiency, and scalability.
translated by 谷歌翻译
Graph Neural Networks (GNNs) have become increasingly important in recent years due to their state-of-the-art performance on many important downstream applications. Existing GNNs have mostly focused on learning a single node representation, despite that a node often exhibits polysemous behavior in different contexts. In this work, we develop a persona-based graph neural network framework called PersonaSAGE that learns multiple persona-based embeddings for each node in the graph. Such disentangled representations are more interpretable and useful than a single embedding. Furthermore, PersonaSAGE learns the appropriate set of persona embeddings for each node in the graph, and every node can have a different number of assigned persona embeddings. The framework is flexible enough and the general design helps in the wide applicability of the learned embeddings to suit the domain. We utilize publicly available benchmark datasets to evaluate our approach and against a variety of baselines. The experiments demonstrate the effectiveness of PersonaSAGE for a variety of important tasks including link prediction where we achieve an average gain of 15% while remaining competitive for node classification. Finally, we also demonstrate the utility of PersonaSAGE with a case study for personalized recommendation of different entity types in a data management platform.
translated by 谷歌翻译
With the development of natural language processing techniques(NLP), automatic diagnosis of eye diseases using ophthalmology electronic medical records (OEMR) has become possible. It aims to evaluate the condition of both eyes of a patient respectively, and we formulate it as a particular multi-label classification task in this paper. Although there are a few related studies in other diseases, automatic diagnosis of eye diseases exhibits unique characteristics. First, descriptions of both eyes are mixed up in OEMR documents, with both free text and templated asymptomatic descriptions, resulting in sparsity and clutter of information. Second, OEMR documents contain multiple parts of descriptions and have long document lengths. Third, it is critical to provide explainability to the disease diagnosis model. To overcome those challenges, we present an effective automatic eye disease diagnosis framework, NEEDED. In this framework, a preprocessing module is integrated to improve the density and quality of information. Then, we design a hierarchical transformer structure for learning the contextualized representations of each sentence in the OEMR document. For the diagnosis part, we propose an attention-based predictor that enables traceable diagnosis by obtaining disease-specific information. Experiments on the real dataset and comparison with several baseline models show the advantage and explainability of our framework.
translated by 谷歌翻译
Because of the necessity to obtain high-quality images with minimal radiation doses, such as in low-field magnetic resonance imaging, super-resolution reconstruction in medical imaging has become more popular (MRI). However, due to the complexity and high aesthetic requirements of medical imaging, image super-resolution reconstruction remains a difficult challenge. In this paper, we offer a deep learning-based strategy for reconstructing medical images from low resolutions utilizing Transformer and Generative Adversarial Networks (T-GAN). The integrated system can extract more precise texture information and focus more on important locations through global image matching after successfully inserting Transformer into the generative adversarial network for picture reconstruction. Furthermore, we weighted the combination of content loss, adversarial loss, and adversarial feature loss as the final multi-task loss function during the training of our proposed model T-GAN. In comparison to established measures like PSNR and SSIM, our suggested T-GAN achieves optimal performance and recovers more texture features in super-resolution reconstruction of MRI scanned images of the knees and belly.
translated by 谷歌翻译